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1
This paper develops a self—consistent theory of the cyclotron

maser instability, assuming azimuthally symmetric perturbations about

a slowly rotating hollow electron beam propagating parallel to a uniform

axial. magnetic field B0~5. The stability analysis is carried out within 
S

the framework of the linearized Vlasov—Maxwell equations. It is assumed

that the beam is thin with radial thickness (2a) much smaller than the

beam radius (R0
) ,  and that w2/w2<<l, where w and are the electron

plasma frequency and electron cyclotron frequency, respectively, in a

frame of reference moving with the beam axial velocity CBb~ The analysis

is carried out for the specific choice of equilibrium electron distribu-

tion function in which all electrons have the same value of canonical

angular momentum and the same value of energy in a frame of reference

moving with axial velocity cBb. Stability properties are investigated

including the important influence of finite radial geometry, finite beam

• temperature, and transverse magnetic perturbations (6B’~0). It is shown

that instability exists for a very narrow range of axial wavenumbers

satisfying Ik_BbwIcI<< I/Ro. Detailed stability properties are calculated
for a variety of system parameters.

*4)~ l.a~. of absence from the University of $ vie1 ’ .~~~ ‘ -l l.o. Park . Nd. 20742
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S I. INTRODUCTION

There is a growing literature on the equilibrium~~
4 and stability5~~

8

properties of intense hollow electron beams, including the recent experimental

studies of basic stability properties,19 plasma confinement schemes

such as Astron,2° high—power microwave generation,
2
~~

25 and electron

ring accelerators.
25 Three of the basic instabilities that occur

In a hollow electron beam are the diocotron tnstabillty,5’6’19 the

electron cyclotron maser instability,8’1’2”
24 and the negative—mass

instabi1ity.~
2
~~
8’25 The negative—mass instability, which is an important

instability for a fast rotational equilibrium, is associated with

azimuthal charge bunching. On the other hand, the electron cyclotron

maser instability,8 ll~2l 24 which is a dominant instability for a slow

rotational equilibrium, is present even for azimuthally syiametric pertur—

bations with ~I9O—O. 
However , the ohvslcal mechanism9 for the cyclotron

maser instability is similar to that for the negative—mass instabi1ity,14~~
8

with radial charge clumping dominating for R~0. Here L is the azimuthal

harmonic number. The free energy for driving the instability is

associated with the transverse energy spread of the beam electrons.

This paper develops a self—consistent theory of the cyclotron maser
S 

instability for azimuthally symmetric perturbations about an intense

hollow beam equilibrium. The analysis is carried out within the framework

of the Vlasov—Maxwell equations for an infinitely long beam propagating

parallel to a uniform magnetic field B~~5 with axial velocity Vb~z
(Fig. 1). The pos’ ge ions form an iamobile (m1-ic.) partially neutralizing
background. In addition, we assume that the electron beam is thin (Eq. (1)],

i.e., the radial thickness (2a) is small in comparison with the mean

radius (Re). It is also assumed that ~~~cw
2, where and are the

- - 

•lsctron plasma frsqu.ncy and slsctron cyclotron frsqnancy, respectively,
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in a frame of reference moving with axial velocity Vb. Equilibrium and

stability properties are calculated for the specific choice of equilibrium

electron distribution function (Eq. (8)3,

n R
f°(H ,P9,p ) 0 

~~ ~
5 (U) 6(P e

_P
o) ‘ 

S

a Z 
2lflflY

bYO

where H is the energy , P0 is the canonical angular momentum, p~ is

the axial momentum, U
~
H_B

bcpZ
_y
Om c / yb is an effective energy

variable, and n0, R0, y0, 
~b’ 

8b and P0 are constants. Equilibrium

properties are examined in Sec. II. One of the important features of

the analysis is that the equilibrium distribution function in Eq. (8)

corresponds to a sharp—boundary density profile (Eq. (17)], with uniform

axial velocity over the beam cross section (Eq. (18)], and nonzero axial

and radial beam temperatures (Eq. (21)3.

Stability properties are investigated in Secs. III and IV, including

the important influence of (a) finite axial and radial temperature,

which limits the unstable range of k—values to a narrow bandwidth

(Appendix C), (b) finite radial geometry and the presence of a grounded

conducting wall at radius r~R , and Cc) the influence of transverse

magnetic perturbations (~~#O). As shown in Sec. III, the most unstable

perturbation is the TB mode with axial wavenumber k
~~b

w/c. Here w is

the eigenfrequency, and c8
~~
Vb is the axial velocity of the beam.

The stability analysis predicts instability for a very narrow range

of Ic values corresponding to I kc_Bbw I<<c /RQ (Appendix C). In this context,

the TB mode dispersion relation can be approximated by (Eq. (71)]

v(w—k V ) 82 (w—k V )
~~~~~~~~~~~~~~ {4~ (b_

4b
÷))~ k 

— 

Y~YØRg(W—kQV~
_W
~,Y~) 

l — 3(w_k
o
V
b
_w
c/yb)

for kc~~~w. Here, ~±— (b±] k are the normalized magnetic wave
0 0  2 2 2admittances defined in Appendix B, v is Budker’s parameter, p “w0Ic 

~~~

and (w0,k0) is defined in Eq. (66) . A detailed

numerical analysis of the disper sion relation (71) is carried out In Sec. IV.
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It is found that the geometric configuration (
~
_+
~+
) and electron density

(v) have a strong influence of stability behavior. For low beam densities,

~5 t  -

instability exists only for (b_+b+)~
O.

S As a comparison with previous analyses ,21 it is instructive to

consider the limit of a very tenuous (v/y0-~O) , infinitesimally thin

(a/R0-~O) beam. In this case, Eq. (71) can be approximated by (Eq. (69)]

— Ic2 
— ~On 2v Jl(aOnRO/ R )  2 (w kV ) 

— 

B
~

(w
~

kVb)
2

c2 R2 ~0~b 
R J 2(a0 ) (W_ kVb•~

Wc/Yb) 3(w_kVb
_w
c/yb)

2

where is the nth root of J1(c*0 )—0 and J
~
(x) is the Bessel function

of the first kind of order £. The general features of Eq. (69)

are qualitatively similar to the dispersion relation obtained by

Friedman et al.21 for perturbations about a self—consistent Vlasov

equilibrium, f
~
_const.xó(Hj_yQmc2).S(pZ

_y
bm8bc)t5(PO

_P
Q), where all

electrons have the same perpendicular energy H~”y0mc
2. However,

Eq. (69) differs in detail as do the corresponding stability

results. For example, the final term on the right—hand side of

Eq. (69) is proportional to B
~
(w_kVb)

2/3, instead of B~ (w~—k 2c2) I2

as obtained in Ref. 21. Moreover, in the previous study, the

system can be unstable for a broad range of axial wavenumbers whereas

the present stability analysis predicts a narrow band of unstable k—

values.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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II. EQUILIBRIUM THEORY —

A. Equilibrium Configuration and Basic Assumptions S

The equilibrium configuration is illustrated in Fig. 1. It

consists of a nonneutral hollow electron beam that is infinite

in axial extent and aligned parallel to a uniform applied magnetic

field 
~~~~ The mean radius of the electron beam is denoted by R0

and a grounded cylindrical conducting wall is located at radius r—R .

The applied magnetic field provides radial confinement of the electrons,

and the radial thickness of the electron beam is denoted by 2a.

As shown in Fig. 1, we introduce cylindrical polar coordinates (r,9,z)

with z—axia coinciding with the axis of symmetry; r is the radial

distance from the z—axis, and B is the polar angle in a plane perpendicular

to the z—axis . The electron charge is partially neutralized by a

positive ion background .

The following are the main assumptions pertaining to the equilibrium

configuration:

(a) Equilibrium properties are independent of z (3/az-’O) and

azimuthally symmetric (~/ae—0) about the z—ax is.

(b) The mean canonical angular momentum of the electrons is

negative, which corresponds to a slow rotational equilibrium.4’6

The positive ions form an immobile (m1-~~) ,  partially neutralizing

background.

(c) The radial thickness of the electron beam is much smaller than

the beam radius, i.e.,

(1)

(d) It is further assumed that

5— -  S~~~ ~~~~~~~ 55
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v a  2 2
— r << 

~
‘o ’~ 

ho , (2)
~O 0

-
~~~~ 2 2where VaNce /mc is Budker a parameter,

R2
N 2ir J dr r n Cr) (3)

R1 
e

is the number of electrons per unit axial length, n0(r) is the equilibrium

electron density, c is the speed of light in vacuo, —e and m are the

charge and rest mass, respectively, of an electron, and y0mc
2 is the

electrQn energy in a frame of reference moving with the mean axial

velocity Vb~z 
of the electron beam. In Eq. (3), R,1 and R2 denote the

inner and outer radii, respectively, of the beam. The inequality

in Eq. (2) can be expressed in an alternate form. For a thin beam,

from Eq. (3) , the average electron density n0 is approximately

nø~
Ne/(41rR0a). Combining this result with Eq. (16), 

Eq. (2) can be

expressed as

(4)

2 1/2where w~~(4 wn0e /y0m) and w e B 0/y0mc are the electron plasma

frequency and electron cyclotron frequency, respectively, in a

frame of reference moving with axial velocity Vb.

(e) Consistent with the low—density assumption in Eqs. (2) and

- - (4) , we neglect the influence of the small equilibrium self—electric

field E
~

(r)
~~ 

and self—magnetic field B (r)k0+B (r)
~~ 

that are produced

by the lack of equilibrium charge and current neutrality.

B. Hollow Beam Equilibrium Properties —

Central to a description of steady—state Vlasov equilibria

are the single—particle constants of the motion in the equilibrium

- 



— -~~~~~sss -

__ —

“S -

7 
5

field configuration. For azimuthally symmetric equilibria with S

a/~e—O—a /~z, there are three single—particle constants of the motion.

These are the total energy H,

H~~mc
2a(m2c4+c2~

2)l~
2 

(5)

the canonical angular momentum P9,

P8 ’r[p 0—(e/2c) rB0 J , (6)

and the axial canonical momentum P ,

(7)

where the equilibrium—self—fields have been neglected in comparison

with the external magnetic field Bo~~ 
(see Eqs. (2) and (4) and Assumption

(e)]. In Eqs . (5) — (7) , lower case denotes mechanical momentum.

Any distribution function that is a function only of the single—

particle constants of the motion satisfies the steady—state Vlasov

equation (3/at ’.O) . For present purposes, we assume an equilibrium

distribution function of the form~

n R
f0(H,P0,P )  a 

0 
~ 5(U)6(P0—P0

) , (8)
21rm~~Y0

2 2where n0—const. is the electron density at r—R0, P0~—(e/2c) 
(R0—a )B0—

const. is the canonical angular momentum of the electrons,

2U H—Bbcp —?Oac ‘~b 
(9)

is an effective energy variable, Bb~ COfl5t• is defined by 6b Vb/c.

2 1/2
~~~~~ ‘rb’ and and 

~b 
are constants . In the

subsequent analysis , it is shown that the axial velocity profile

associated with Eq. (8) is uniform over the beam cross—section,

—~~~~~~~ --‘~~~ -~~~~ -~~ - - -5 ’.
~~~~~~~~~~ - --——
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with V
~

(r)a8bc. Furthermore , since all of the electrons have the same

canonical angular momentum P6~P0
,’O, no electrons pass through the

- 

axis of symmetry (r=O), and the equilibrium electron density profile

calculated from Eq. (8) corresponds to a hollow electron

Several pertinent equilibrium properties can be deduced for the

class of thin—beam equilibria described by Eq. (8) . For this purpose ,

it is useful to transform the energy variable U defined in Eq. (9)

from momentum variables 
~~~~~~~~ 

appropr iate to the laboratory

f rame to momentum variables (p ’ , p~ , p~) appropriate to a f rame of

reference moving with velocity BbC~ Z ( the mean anal velocity of the

electron beam) . Here is a unit vector in the z—direct ion. The

relevant transformation4 is given by

~
‘r~~r’ 

p0ap~ , p Z YbP Z TbY m ~bc, ry b (y~~ 8bp Z /mc) , (10)

and

U— ~~- (y’—y0)mc
2 

, (11)

where y_(l+~
2/m2c2)lI’2 and y t=(l+~ t 2/m2c2)~~

’2. After some straight-

forward algebra it follows from Eqs. (8)—Cu ) that f~d
3p transforms

S according to

0 3 nORQ (y ’+Øbp ’/m c) 2 2 3
~~ 2irnry0y

’ 
Z 

~S(y’mc —y 0mc )6 (P~—P0)d p ’

(12)

where d3pluldprdp0dpz and d3p’ardp dp~dp~. It is evident f rom Eq. (12)

that y 0mc2”const. can be identified with the total electron energy in

a frame of reference moving with axial velocity BbC. On the other

2 1/2hand, since the constant 
~b 

is defined in terms of 8b by Bb”(Yb l) ‘~b

(cf., discussion following Eq. (9)1, it follows that ybmc
2 (l_

~~
)”
~
”2mc2

-5-  _ ___ _ _ _ _S*__*__~~~~ _~~~~~~~~~ * 5  
5~~~~~~ --- S__ __

~~~
_ 

*~~~~~~ S -
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. 
is the energy associated solely with the directed axial motion

- 
~- (i.e., the energy calculated for pr

ap
~
ap
~~O).

For a thin—beam equilibrium consistent with Eq. (1) , the energy

variable y ’inc 2 in Eq. (12) can be approximated by

y~mc2ac(m2c2+m2 p 2+pj 2) 1/2 (13)

where use has been made of ~~~
8

a~~~
0, 

p is defined by

p=r—R0 , (14)

is the nonrelativistic electron cyclotron frequency, and

p~
2 .p ’2+p ’2 . Substituting Eq. (13) into Eq. (12) , and representing

Jd
3p ’ J  d~~J 

d
~1 

dp~p
—

~~~ 0 0

it is straightforward to show that the electron density profile can

be expressed as

n0(r)ald
3pf0(H,PB , Pz)1n0 

—
~~~ O(a~—p~) , (15)

where
2 1/2aa(y 0—1) C/(E) (16)

is the half—thickness of the beam, and 1(x) is the Heaviside step

S function defined by

( 0  , x<O ,
1(x) =

S ~ l , x>O .

From Eq. (16), we note that the thin—beam assumption (a<<R 0) is equivalent

2 ~2 2 2
to the requirement y0

<<l+w R0/c * Since the electron beam is assumed

to be thin, we approximate R0/r~l in Eq. (15), 
and the electron density

profile reduces to

-~~~~-—S .
~~~~~~~~~~~~~~~~~~~~~~~~~

S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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o (n 0 I r—R0 1<a ,
n (r)=~ . (17)e 

~~~~~~~~~~ 
otherwise

- 
Making use of ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

we obtain the

- 
-

‘ 

- axial velocity profile

vO (r)=(Jd 3pv f O)/ (Jd 3
Pf

O)
z z e e (18)

=Bbc=Vb=c0~~t . ,

for r—R 0 !<a. That is , the axial velocity profile is uniform over

the beam cross section. In a similar manner, the azimuthal velocity

profile associated with the equilibrium distribution function in Eq. (8)

can be expressed as

V (r)=(j ’d 3pv8f °) / t ( f d3
~ f °)

1b~Y Om r Zc 0

Making use of P0
=_e (R~_a

2)B0/2c [definition following Eq. (8)] and the

thin—beam assumption (a<<R0), the preceding 
expression for V~(r)

can be approximated by

eB0 0 CV (r) = ___— p _ p  (19)
8 

~~~~~~

for I r—R01<a .
Finally, fo r the equilibrium distribution function in Eq. (8) ,

the radial and axial elements of the electron pressure tensor are defined

by

(20)

P
ZZ

( r)=T~ (r )n~ (r) Jd
3p(v Z

_V
b ) (P Z_P Z ) f 2 (H ,P8 ,P z)

H where ~~a(Id~p 
~ ~

)/(Jd3~ ~~~ vr pr /ym, and T~ (r) and T°(r) are the

‘5- 5~~~~~~~~~~~~~~~~~~~~ _ ~~~~~~~~~~~~~~~~ ‘_~~~~~~~~~ __ —- ‘~~~~~~~~~~•~~~~~~~~~~
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effective radial and axial electron t emperat~re profiles , respectively.

Substituting Eq. (12) into Eq. (20) , it is straightforward to show that
S 

T°(r)—T°(r) = 
c (a2—p 2) (21)r z 101b

for r—R
01<a. Furthermore, the off—diagonal elements of the equilibrium

pressure tensor are identically zero , i.e., ~~~~~~~~~~~~~~~

The self—consistent electron density and temperature profiles

are illustrated in fig. 2 for a thin—beam equilibrium. Evidently, for

the choice of equilibrium distribution function in Eq. (8), the

electron density profile u0(r) is rectangular with sharp radial boundaries

[Eq. (17)3, the axial velocity profile V
~
(r)=B

b
c is uniform over the

I. beam cross section [Eq. (18)], the azimuthal velocity profile V~(r)=

W P /’Yb varies linearly over the beam cross section [Eq. (19)],

and the radial and axial temperature profiles are parabolic [Eq. (21)].

Further equilibrium properties of intense hollow beam equilibria

described by Eq. (8) are discussed in more detail in Ref. 4 

“ 5 -  5-—~~~~--— ~~~~~~~~~~~~ - - -



— —5- ‘5- “ ‘“ ‘• ‘ 1—--- c ~~~~~~~~ ~~~~

12

III. STABILITY PROPERTIES FOR AZIMUThALLY SYMMETRIC PERTURBATIONS

S 
A. Linearized Vlasov—Maxwell EqLuations

In this 8ection, we make use of the linearized Vlasov-Maxwell

equations to investigate stability properties for azimuthally symmetric

perturbations (~ /~ O— O) about the thin , hollow—beam equilibrium described

by Eq. (8) . We adopt a normal—mode approach in which all perturbations

are assumed to vary with time according to

6~(~,t)4(~)exp{—iwt}

with ImLu>O. The Maxwell equations for the perturbed electric and

magnetic fields can be expressed as

- 

_ 

Vx~(x)’i ~

(22)

z4~ ~ ~
where

J( x) 1t_eJd 3
~ Z ~~~~~~ 

(23)

is the perturbed current density. In Eq. (23),

0 v’x~(~ ’) a o
* 

f
e~~~~ ,~~~~

hh
eJ dt exp{—iwr} 

~~~~~ c }.1—~
. 
~e 

(24)

is the perturbed distribution function, rat ’~ t, and the particle

trajectories ~~‘(t ’) and ~‘(t’) satisfy d~ ’ Idt ’—v ’ and dp ’I dt’—
“5, 

~~1

with “initial” conditions ~~‘(t ’at)~~~ and

To make the theoretical analysis tractable, we Fourier decompose

the z—dependence of all perturbed quantities according to

- 5* -~~ -*—--—--_ — * S -  - - 5~~~~~~~~ S~~~~~~~~~~~~~ 5

~~~~~~~~~~~~~~~~~~~~~~~~~
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~(~9’.Jdk~~ (r)exp{1kz} (25)

where k is the axial wavenumber. Note that the perturbation amplitudes

in Eq. (25) are independent of 8, because the present stability

analysis is restricted to azlmuthally symmetric perturbations (L0,

where £ is the azimuthal harmonic number). Making use of Eqs. (22)

and (24), it is straightforward to show that

~~ B~~ (r) ~~~~ (r)= _~~L JOk (r) (26) ]
where

p w / c —k (27)

and the function 3(r) is defined by

4
~
(r)

~
irEBk

(r) - (28)

Equation (26) can be expressed as

2

~~ ~zr~~ 
22_ 3(r) (29)

in the vacuum region outside the beam, where JOk
(r)aO .

The perturbed azimuthal electric field EBk(r) is continuous

across the beam boundaries (raR1 and r—R2) ,  as is the function (r)

defined in Eq. (28). For azimuthally symmetric perturbations,

it can be shown that (Appendix A)

IRo(a./ar)R I~
O[3(RO)) (30)

where 0[~(R0)] denotes terms of order (R,~). Integrating Eq. (26)

from r—R1—6 to raR2+d and taking the limit ~~~~ 
we obt ain the

approximate result17 
+

Bzk (R2
)_B

zk (R
i
)a
~
._
~
_ J

R
_ dr JOk(r) (31)

- - - - - S - ‘ 
S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 5- 

~~~ ‘ 
‘ -
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where *(R,~) denotes h a  ~P(R~±a) . and use has been made of Eqs. (1)

and (30).

Similarly, from Eq. (22), we obtain

f (rB
8~(r)]+i ~~ 

E~~(r) ~~!. r
~~k (r) . (32)

Making use of the continuity of tzk(r) at rL1 and r—R2, and the

inequality j RQ (3E Zk/ar) R~~O[E k(RQ) J ,  it is straightforward to show
0

that 
S

S 

R2a0k(R;)_y8k(c) -~~~~~ dr r JZk(r) , (33)

where again use has been made of a/R0<<1. Substituting

B$k(r)~~~~~ [w
~~~~ zk(r)_4i~k.Jrk (r) ] (34)

cp

into Eq. (33) gives

R2 + 
- 

~~~~~ 
( zk) 

- ~~~~~~ 
{k[R 2Jrk (R

~
)_ R

~j
3

~k (R
~) 1

- ip2 dr r JZk(r)} . (35)

Since the perturbed radial current density vanishes outside the beam,

we note that Jrk~~1
)t
~
l3rk(1~2~

hI0 Therefore Eq. (35) can be expressed as

R2 (:~
zk)

+ 
- ~~ -i 4

~~2 i:~ 
dr r JZk

(r)
* 2 1 (36)

For convenience, in the subsequent analysis we introduce the

14—18normalized electric and magnetic wave admittances, d± and b±,

defined at the inner and outer surfaces of the electron beam by

— -5 -- ~~~_S 5-~~~~~~~ r -- j - -5 - —--
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d+
.
~

(r(
~
/ar)E k

(r) ) 
+~~zk~~2~R2 (37)

d a[r(a/3r)
~~k

(r)J —‘~ zk~~1~
and

b+
.’—B k(4)/(r(a/ar)fi k

(r) ]R2 (38)

For a beam in vacuum, the values of b~ and d~ depend in detail on the

geometric configuration, e.g. , location of the conducting wall

(Appendix B). It should be noted from Eqs . (22) and (25) that there

are two main classes of perturbed fields, i.e., TE and TM perturbations .

For the TE mode , the perturbed radial and axial magnetic fields

and can be expressed as functions of the perturbed azimuthal

electric field Eok. On the other hand, for the TM mode, Erk and

can be expressed in terms of E~~. It is therefore convenient to

express the right—hand side of Eqs. (31) and (36) as

2p2 1R~ 

dr Jek~~
)axll(w)+(Ro)+1Roxl2(w)Ezk(Ro)

+ (39)
4 2 

dr r Jzk(~)[x2l
(w)lRo~~

(Ro)ix 22(w)E zk(R
o)

where the matrix elements Xjj(W) denote effective susceptibilities.
16’17

Making use of Eqs. (29)—(39), it is straightforward to obtain the

approximate results

(b_+b÷
) ( R

0
)a
~11(w) +(Ro)+iR~xl2 (w)E k (Ro)

(40)
(d_+d+)E Zk (Ro)”i [x 2l (w) /Ro] ( R Q)+x 22 (w)

~ Zk (RSo)

S - - -- --5- 5- 
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I.
Af ter some simple algebraic manipulation that makes use of Eq. (40),

S the dispersion relation f or azimuthally symmetric perturbations can be

expressed as

[b +b~_X11(w) ] [d +d4_X 22 (w) ]+X12(w)X 21(w)uI 0 . (41)

Evidently, an explicit evaluation of the susceptibilities Xjj(W)

is required for a detailed stability analysis.

B. TE Mode Dispersion Relation

In this section, closed expressions are obtained for the relevant

electron susceptibilities [Eq. (39)1, and the results are used to

derive a simplified TB mode dispersion relation. We specialize

to the case of a self—cons istent Vlasov equilibrium in which all

- - - 
electrons have the same canonical angular momentum and the same total

4
energy in the moving frame (Eqs. (8) and (12)1. To simplify the

right—hand side of Eq. (24), use is made of Eqs. (6) and (9), and

the identities aU/
~~aX

_V
b~Z 

and aP8/ap0—r~8, where is a unit vector

in the 8—direction . The perturbed distribution function can then be

expressed as

where 0

dtexp (i[k(z ’—z)—WT ]} 
~
(1_

~~~ )i8k
(r’)v

~ 
.....i

(42)
kv’ v’

+r’ [(
1__

~~)EOk
(r ’)_ -

~~
BZk(r ’)] ~~~~~~~~~~~~

is that portion of the perturbed distribution function that is generated

from the TB perturbation, and
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0

~~k (r ,~
) e  

~~~ 
d r exp{i(k(z ’_z)_wt]}{[

~rk (r’)_8
b1Ok

(r’)]v

L
+EZk(r’)(v~

_V
b)}

is that portion of 
~ek 

that is generated from the TM perturbation.

As indicated in Eqs. (42) and (43), the particle trajectories,

r’(r), 8’(r), z’(’r), in the equilibrium field configuration are required

in order to evaluate the perturbed distribution function. Making use

of Eqs. (5) and (6), and P0”P0”— (e/2c)(R~—a
2)B0 [see discussion following

Eq. (8)], it is straightforward to obtain the required trajectories.

Assuming that the electron orbit passes through the phase—space

point 
~~~~~ 

and (z,p
~
) at time t”t, we find

p ’apcos(~~ /y)t+(p /m~~) sin(w /y) t ,

(44)

-
~ ‘~‘(~~/yR0) [pco5(wc/y)T+(pr/m

~c
)sin(

~c
/y)t]

where p— r—R0, w~
aeB0/mc is the nonrelativistic electron cyclotron

frequency and use has been made of Eq. (1).

From Eqs. (39) and (42) , the matrix element x11(w) is

determined from

+

x11(w) (R0)”
4-~ 2 1

R2 dr 
~~k

(r) , (45)
C p R 1

where the perturbed azimuthal current density corresponding to the

TB mode is defined by

v
~ 

fek(T,~~ 
(46)

For present purposes it is also assumed that

- - 5 - - ---~~~~
-
~~~~

- -— ~~~
5S-

~~~
— — ~5~~~~~~

55 S 
~~ 

S
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W_kV
b
_W
c/Yb I <<Wc/Yb (47)

where w
~

aeB0/10mc is the electron cyclotron frequency in a frame of

reference moving with axial velocity Vb . Within the context of Eqs .

(1) , (30) , and (47) it is valid to approximate

(r ’)ai r ’~ $k (r ’)4( R0) (48)

and to neglect the terms proportional to af°/aP9 in Eq. (42), since the

corrections associated with these terms are of order

a/R0 (c cl), or smaller. Substituting Eq. (48) into Eq. (42), the

perturbed distribution function in Eq. (42) can then be approximated by

kV ~f° O

~~k
(r ,

~
)a—ie (1__ ~~).~j!~ ~ 

dr ê’ exp {i[k(z~ — z )— wt] }  (49)

where use has been made ~~ v~—r’~ ’. Since the variable U is an even

function of 
~r 

[Eq. (9)], we note from Eqs. (46) and (49) that any

portion of the time integral in Eq. (49) that is an odd f unction of

‘r will automatically give zero when the integration over 
~r ~~

carried out. Therefore, we simply omit terms proportional to odd

functions of when calculating from Eq. (49) . Making use of

Eqs . (44) and (47) , the perturbed distribution function for the

TB mode is given by

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘ 
(50)

where w —eB /mc.
‘

5. 

~: integral Id3P v0 ~ek is required to evaluat e the perturbed

azimuthal current density. For a thin, hollow beam, we note from

Eq. (44) that v9 ”r~ can be approximated by

y
e— . (51)

- - -5~~~~~~~~~~~~~ .—— - 
j
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S Substituting Eqs. (8), (50) , and (51) into Eq. (46) , making use of

* 

the transformations in Eq. (10) , and carrying out the required

integration over momentum, the perturbed azimuthal current density

corresponding to the TB mode can be expressed as
2 2

(r) — 
0 — —~~~~

‘

~ (R ) â(p—a) +tS(p+a)
Ok 2

~b~0~~0 ~ w /  0 a(w_kVb
_W

C/yb)

2 2 2 2  (52)
WcC b)(W••~~b c /Yb

)_ (W8b
_kC) ]•(a —

~
- 

[c2 (w~~~b_w
c/yb) 2_(w~b_kc) 2w~ (a2_p 2) ] 3/2 ‘

where w
~
aeE

0/y0mc is the electron cyclotron frequency in the moving

frame. Substituting Eq. (52) into Eq. (45) , we find

(w) — ••••
~~~ 

(w— kVb)
2 

a — 

c[
~
_ (kc_w6b)

2/(w_kV
b

) ]

‘
~‘b c2p2 (kc_wBb) 2R0 ~~C~~~~w8b)

- - (53) 1
[ c~ + w a(kc — 

~~~ 1
XLfl

[ 
c~ — w

~
a(kc — wOb) j

where w~—4wn0e /y0m is the electron plasma frequency squared in the moving

frame, and £~ is the Doppler shifted frequency defined by

(54)

The following point of verification is noteworthy . If instead

we make use of the equilibrium distribution function (characterized

by V~’0)

— 
2ry0m 

6( H—y 0mc2)t S (P9—P 0) ,

and then make the appropriate relativistic transformation to a

f rams of reference moving with axial velocity 
~
BbC~Z

, then the

expression obtained for x11(w) is identical to Eq. (53).

Following similar algebraic manipulations, we have evaluated

the r~~.ining susceptibility matrix elements x 12~ x21~ and x22.
-5 -5- ,
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~- Rovever, after some straightforward but tedious algebra, it is found 
S

that

* 

< ~JL~ , << i. . (55)

Therefore, within the context of the inequalities in Eq. (55) , the

TB mode dispersion relation obtained from Eq. (41) can be approximated

by

b + b+uuX11(W)  . (56)

En Sec. IV, we make use of the approximate dispersion relation in

Eq. (56) to investigate TB mode stability properties for azimuthally

symmetric perturbations about the hollow—beam equilibrium described

- by Eq. (8) .

- - —S—~~~~~~~ -55---SL --555 5-55— - *-.-
—-5— 

~~~~~ 
‘
~~~~~
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S IV. TB ~)DE STABILITY ABALYSIS FOR AZIMUTHALLY SYMMETRIC PERTURBATIONS

.
5 

Within the context of Eq. (55) , the TB mode is the dominant

unstable perturbation. In this section, we make use of Eqs . (53)

and (56) to investigate TB mode stability properties in parameter
21—24regimes of experimental interest.

The number of electrons per unit axial length can be expressed as

Nea4wn OaRO. Eliminating n0 in favor of Ne in Eq. ( 53) and substituting

Eq. (53) into Eq. (56), the TB mode dispersion relation is given by
- 

(u_kv
b)
2 [c1_ (kc_w8

b)
2/(w_kvb

) ]
b+b = 1—  V

-; 
— + ‘

~b~
’O p2R

~
(kc_t

~Bb
)2 28o

(kc_
~8b
)

(57)

X~,n c2_ B O (kc_w8 b)

where v~
Nee2/mc2 is Budker ’s parameter , B0!(l—l/y ~) 1”2 , and use has been

made of Eq. (16) . The growth rate w~~Imw and real oscillation

frequency w —Rei~ can be determined from Eq. (57) for a broad range

of system parameter, by solving numerically the full transcendental

dispersion relation. We reiterate that Eq. (57) is valid only when

~~~~~~~~~~~~~~~~~~~~~~~ [Eq. (47)]. Moreover, it should be noted

that the magnetic wave admittances b~ defined in Eq. (B.3) are generally

complicated functions of the eigenfrequency W W r+iW
i~

L
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A. Limit of a Tenuous, Infinitesimally Thin Beam

To simplify the expressions for the magnetic wave admittances

b± defined in Eq.(B.3), it is useful to consider the limit where the

electron beam is infinitesimally thin ,

a/R0
÷O , (58)

and the beam density is very t enuous , i.e. ,

- \)/YçfO . (59)
V

Making use of Eq. (58) , it is straightforward to show from Eq. (B.3)

in Appendix B that b+b+ can be approximated by

2J1(pR ) /np 2R~b_+b+
= _

Jl (pR O) [ J l(pR~)N l(pR c
)_ J l(pR c)N l(pR O) ]  

(60)

where p2=w2/c2—k2, J1(x) and N1(x) are Bessel functions of first and second

kind, respectively, and use has been made of N0(x)J1(x)—J0(x)N1(x)=2/irx.

In the absence of a beam, the vacuum TE mode dispersion relation is

given by

p2R~
111(w 2/c2_k2)R ~~a~n , (61)

where is the nth root of J1(z0 )0. For a very tenuous beam

[Eq. ( 59)] ,  it is evident from Eqs. (57) and (60) that Eq. ( 61) is

a good approximat ion to the dispersion relation in Eq. (57) . [The

right—hand side of Eq. (57) describes the beam—nroduced modifications

to the vacuum dispersion relation (61).] Taylor expanding Eq. (60)

about (tu2/c2—k2)R~’ici~~, it is straightforward to show that b_+b+ can

be approximated in leading order by

L A - 55 - 

b +b 1 (’c)(w k2 

R 1
~l~~OnYY)~~~~~~~~~~~~~~~~~~~~~~
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~ !- Substituting Eq. (62) into Eq. (57) , we obtain the approximate

dispersion relation

2 a2 J (a R /R ~ 
2 / w—kV \2

2 On 2~ l O n O c  ‘ b— - k - - — —-
c2 R2 ~b

1O R3 2(a0 ) \kc_wBbc (63)

~
_(kc_w 8b) 2/ (w_kVb) 

~2+8O (kc_
~ 8b )

X 1 — 
2
~o
(kc_

~Bb
) 9’~fl c

~
_B

O
(kc_

~~b
)

for a tenuous, infinitesimally thin beam.

To lowest order, the eigenfrequency w and axial wavenumber k are

obtained from the simultaneous solution of Eq. (61) (the vacuum TE
U,

mode dispersion relation) and the condition for cyclotron resonance

[Eq. (47) ]

t
~
kVb41~~

/
~fb 

. 
* (64)

-
~ In addition, as shown in Appendix C, the region of k space corresponding

to instability is very narrow—band with

kc
~
w$b . (65)

Solving Eqs . (64) and (65) for the characteristic frequency and wavenumber

(w ,k) E( w ,k ) ,  we find (Fig. 3)

WO W Y b
(66)

kO w y b Bb/ C ,

where use has been made of yb~
(l_B

~
Y
~~
’2. Since, for a very tenuous

beam, we also require that (w 0, k0) solve Eq. (61) in leading order,

it follows that instability exists only in the narrow region of

parameter space satisfying



- *5*5-5 •~~~~~ *555-~~ 5*’ 
-

‘ S

24

c O n  (67)

This feature is also evident from the numerIcal studies of the dispersion

relation presented in Sec. IV.B. Finally, for future reference,

it should be noted f rom Eqs . (61) and (65) that the group velocity

can be a ,proximated by

2
V —~~~~=~~~-—~~~v (6 8)g dk w b

That is , for a very tenuous beam, the group velocity of the unstable

waves is approximately equal to the beam velocity . U,

Appendix C and the previous paragraph give some useful insight

into the region of parameter space corresponding to instability.

Most important is the fact that the instability is narrow—band

in k—space with I kc_w Bb I <<c /R O [Appendix C and Eq. ( 65)] .  Expanding

the logarithmic contribution for small I kc_w Bb l ,  the dispersion relation

in Eq. (63) can be expressed in the approximate form

— k2 aOn 2v f
Jl O n RO c ) )

2
I~~

1(
~b

c2 — 

R
2 1b’~0 

I R J ,(a0 ) 
~ [~

_kV
b

_w
c/y b

2 2 (69) 5

~o
(
~
_kv

b) -
~

3(w_kV
b
_w/ yb) 

2)

where ~~=(l_ lIy~)
1.
~
l2 . The general features of Eq. (69) are qualitatively

similar to the result obtained by Friedman et al.2’ for perturbations

about a self—consistent Vlasov equilibrium , f 0=c onst .x 6 (H j_10mc
2 ) x

where all electrons have the same perpendicular

energy H~—y0mc2. As indicated in the introduction, however , Eq.

( 69) differs in detail as do the corresponding stability results.

For example, the last term on the right—hand side of Eq. (69) is

proportional to ~
2(w—kV )2/3, instead of 8

2(~
2
—k2c2)/2 as obtained in

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~ * 5 ~~~~~~~~~~~ 5-5-. 
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Ref . 21. Therefore , depending on the region of parameter space, the

stability properties obtained from Eq. (69) can differ considerably
S 

from the results obtained in previous analyses of the cyclotron maser

instability.
21 Moreover , the dispersion relation in Eq. (63) predicts

instability for a very narrow range of k—values, whereas previous

studies21 
have not been able to identify the range of unstable k values

in a consistent manner.

Finally , the necessary and sufficient condition for Eq. (69) to

have unstable solutions (Imw>O) is given by
22 J ( a  R / R )4 vc 1 On 0 C (7

~O 3 2 RJ(a ) ‘
c 2  On

which is qualitatively similar to the result obtained by Sprangle

and Drobot1° for a non—self—consistent equilibrium slab configuration.

B. Numerical Analysis of Dispersion Relation

In this section we make use of the dispersion relation (57)

to carry out a numerical investigation of stability properties. In

this regard , no a priori assumption is made that the beam is very tenuous

(as In Sec. IV.A). However, use is made of the fact t hat the narrow—

band of unstable k values satisfies kc_w
~b I <<c/RO. Expanding the

logarithm in Eq. (57), and evaluating k , p2, and b
++b_ at (~ ,k)—

(~0,k0) (Eq. (66)1, the dispersion relation (57) can be approximated by

5 

2 - d _______ 

(w_k
O
V
b)

~ 
(b +b

+)+(
w_w

0)[~~ 
(b +b

÷)) 
= 

Yb YORO
2 

(71)
8c 

(w_k
o
V
b
)

- 

- x 1 — 
~~ (w_k

o
V
b
_W

C
/yb) 

‘

where 3
2
~w~ /c2—k~, and b_+b+E[b_+b

+]W k  
is defined by Eq. (B.3).

- ‘ -5*— -~~~~~~~ - ~~~~~~ S- ’ -~~ *5,, ~~~~~~~~~~~~~~~~~ 
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The growth rate w~~Inx and real oscillation frequency wr~
Rew have

S 
- bee-. calc .lated numerically from Eq. (71) for a broad range of system

parameters a/R0, R / R 0, ‘
~ 

8
b 

and For R
~

/R0 corresponding to

we have Taylor expanded (b_+b+) about w w 0, approximating

(b -1-b÷) in leading order by (b +b+)=(~
_w
0)[d(b,..+b+)/d~

] k • For
U)0, o

present purposes , to illustrate the influence of the geometric configuration

on stability behavior, we calculate the normalized magnetic wave admittances

b~. Shown in Fig. 4(a) is a plot of 
~+

+b_ versus R
c/RO~ for B~=0.2~

• 6b o
~
143 and a/R0—0.l. It is evident from Fig. 4(a) that ~~~~~~ for

R
~

/R0~
u2. 18 and R

~
/Ro=3.75, which corresponds to the TB mode dispersion

- 
S relation without beam—produced modifications. Figure 4(b) shows a plot

of the normalized growth rate hi .’ versus R~/Ro obtained f rom Eq. (71)

for ‘v=O.OOl and parameters otherwise identical to Fig. 4(a). Two

important features are noteworthy from Fig. 4. First, for a low beam den—

sity (v~O.OO1), the maximum growth rate occurs at the value of R
~
/R0

for which 
~~_

+
~~÷ 

is equal to zero. For example, in Fig. 4(b), the

system is most unstable at R /R
0”2.l8. Second , for a low beam den-

sity, the system is unstable only in the range where b_+b~~O [compare

Figs. 4(a) and 4(b)].

Shown in Fig. 5(a) Is a plot of (b ,+b+) versus R
~

/Ro for 8~—0.4.

and a/R0—O.2. Also shown in Fig. 5(b) are plots of the

normalized Doppler shifted real frequency Re(
~
2/wc)=(wr

_kV
b
_w

c/yb)/wc

and growth rate versus R
~

/Ro for ‘v O.OOl and parameters otherwise

identical to Fig. 5(a). Note that Re(
~
2/w

~
) is plotted only for the

range of R~/Rø corresponding to instability. Evidently , for the low

beam density in Fig. 5, the stability properties are qualitatively

• similar to those in Fig. 4. However, it is also evident from

Figs. 4(b) and 5(b) that the growth rate increases rapidly as Bo is

• S-*-*~-———--—— .——-S*— • —S——~~~~~~~~~~ S .~~~~~~
‘ , • ‘ ‘

1~5 ~~~~~~~~~~~~~~~~~~~~~~~ ‘
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increased. Moreover, we note from Fig. 5(b) that Rec2/w
~ 

assumes

a maximum value (0.019) at R
~

/Ro 2.375 and decreases rapidly to zero

when R/R0 is increased.

We conclude this section by emphasizing that stability properties

also exhibit a sensitive dependence on beam density. This is illustrated

in Fig. 6 where the normalized growth rate w
~

/w
~ 
is plotted versus

R / R 0 for two different values of v, and parameters otherwise identical

to Fig . 5(a) . For intermediate or high beam densities (v ,~O.Ol) ,

the maximum growth rate no longer coincides with values of R
~

/Ro
for which (S+

~+
)1.O. For example, in Fig. 6, the maximum growth rate

occurs for R
~

/Rou2.45 when ‘v—O.Ol, and for R /R~=2.5l when v—O.l.

Evidently , the value of R
~

/Ro corresponding to maximum growth rate

• 
is a slowly increasing function of beam density. Rowever, the value

of the maximum growth rate increases relatively rapidly with

increasing beam density. We also note, for high beam densities,

that the system can be unstable even for negative values of (b.+b+)
S (Fig. 6). This is not the case for low beam densities (Fig. 4).
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S 

- 

V. CONCLUSIONS

In this paper we have formulated a self—consistent theory of the

cyclotron maser instability. The stability analysis was carried out

• for an infinitely long hollow beam propagating parallel to a uniform

magnetic field B~~~, within the framework of the linearized Vlasov—

• Maxwell equations. The equilibrium configuration and basic assumptions

were summarized in Sec. II.A. In Sec. II.B, equilibrium properties

were calculated for the choice of electron distribution function in

• which all electrons have the same value of canonical angular momentum

(P0) and the same value of energy (y0nic
2) in a frame of reference

moving with axial. velocity BbC [Eq. (8)]. Stability properties for

azimuthally symmetric perturbations were examined in Secs. III and IV.

As shown in Sec. III.B, the TB mode corresponds to the most unstable

perturbation. Moreover, the analysis in Appendix C predicted that

instability occurs for a very narrow range of k values satisfying

I kc—8bw 1<< c/ RO. A detailed numerical analysis of the approximate

dispersion relation (71) was presented in Sec. IV.B. One of the most

important conclusions of this study is that the geometric configuration

* 

S (b_+b+) has a large influence on stability behavior, particularly

when the beam density is low. Moreover, the maximum growth rate

increases relatively rapidly with increasing beam density.
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• APPENDIX A

EVALUATION OF PERTURBED AZ IMUTHAL ELECTRIC FIELD

From Eqs. (22) and (28) , we find that

f (r) — — 
~~~~ ~~~ (r) . (A. l)

Since the perturbed azimuthal current density is even function of p

• (Eq. (52)], it is straightforward to show that
S i

S 

Bzk(~& i  
[nZk(R

~)-+.~Zk(c) ] . (A.2)

Making use of Eqs . (29) , (38) , (A.l) and (A.2), we obtain

- 

R0(d3/dr)~~/~ (R
0) 4 p2R~(b4-b )  . (A.3)

From Eq. (A. 3) , it follows that

JRO(d3/dr)R I~
0[3(RO

) ]  , (A.4)

provided Ip
2R~

(b+—b_) ~l.

S - 555 ~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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APPENDIX B S

EVALUATION OF MAGNETIC WAVE ADMITTANCES

S 

In this section, we obtain expressions for the wave admittances

at the boundaries of a hollow electron beam in a cylindrical waveguide.

Since the perturbed current density vanishes in the vacuum region

outisde the beam , Maxwell’s equation in this region can be expressed

as

• 

~ 
(‘~~ 

-
~~~~~ r + p2)B k(r)

~
0 (E .l)

where p2—w 2/c2—k2. In obtaining Eq. (B .l) , use has been made of Eqs.

(29) and (A.l) . The solution to Eq. (B.l) is given by

( AJ0(pr)+BN0(pr) , R~<r<R
B k(r) 

C (B.2)
• 4 Z 

~ CJ0(pr) , Ocr<R1 ,

where J0(pr) and N0 (pr) are Bessel functions of the first and second

- 
S kind, respectively , and Rc is th e radius of the waveguide (Fig. 1).

In Eq. (3.2) , the constants A, B , and C are related by Eq. (28) and

the boundary condition [(a/ar)B k
(r) ]

R —0. After some straightforward

algebra, the magnetic wave admittances defined In Eq. (38) can be

expressed as

1 
J
0(PR2)Ni(PRc)_Ji(PRc)N

0
(PR2)b~ R2p Ji (pR2)N1(pR )_J i (pR

~
)N i(pR 2)

(B.3)
1 

_______

~~~~~~~ J1(pR
1
) ‘

where R1 
and R

2 
are the inner and outer radii of the beam, and use has been

made of d30(x) /dx”—J1(x) and dN0 (x)/d x”—N 1(x). Closed expressions for the

electric wave adaittances di [Eq. (37)] can be obtained in a similar manner
17

L but are not required in the TB mode stability analysis in Sec. IV .



-~~~~~ •~~~~ —•—“—
~~~: 

-
~~~~~ 

5-
~~~~~~~~~~~~

5
~~~~~~~~~~ 

~~~~~~~~~ 5* 5 - • 5*5 *S5*S5* _ S 5 *~~~~~~~~~ _555-’* 5 - 5 - ” * ’ * ’5- 5*S’*:_~~ 5~~~~~5- 5- 5- —.---5*
~

• -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —

31

APPENDIX C

NYQTJIST STABILITY ANALYSIS FOR PERTURBATIONS WITH k
~8bw/c

In this section , we make use of the Nyquist method to obtain

necessary and sufficient conditions for instability from the TE mode

dispersion relation (Eq. (57)]•15~26 The analysis is carried out

S for perturbations with the axial wavenumber k satisfying

• 
q.1k—8~w/c1~O . (C.l)

Consistent with Eq. (47) , for present purposes we approximate

in the definitions of q [Eq. (C.l)], p2—w
2/c2—k2, and the magnetic wave

admittances b± (Eq. (B.3)]. Assuming (b...+b+),
&O , and defining

~~~~~~~~~~~~~~~~~~~~~~~~~~

H s.1qcY~~/~~Q
w~~ , (C.2)

2 2 2  3 2c t c  p ROyQyb/vw

it is straightforward to express the TE mode dispersion relation in

Eq. (57) as

D(z)_ (z_s)Ln(E~) 
- 2 - —2 (b _+b~ )q 2ct , (C.3)

where the complex variable z is defined in Eq. (C.2). Note from

Eq. (C.3) that the dispersion relation is an even function of q so that

stability properties do not depend on the sign of q. Therefore, we

assume q’O without loss of generality.

Nyquist plots of the function D(z) defined in Eq. (C.3), which

map the upper half z plane (contour r) onto the complex D plane

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  _ _ _ _ _ _
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• 

. 
(contour n’), enable us to study the stability properties predicted by

Eq. (C.3) [Figs. 7 and 8]. Figures 7 (a) and 8(a) are plots of contour

r for s<l and s>l , respectively. Branch cuts originating from the

• branch points at z—±l must be introduced , as shown in Figs. 7(a) and

• 
i 8(a) ,  to make the function D(z) single valued. Plots of D(z) are

S shown in Fig. 7(b) for s<l, and in Fig. 8(b) for s>l. In obtaining

the contour r’ in Figs. 7(b) and 8(b), use has been made of the

definition Lnz—~nr+i& (—ir<e’c ir), where z—rexp{iO}.

The Nyquist analysis indicates that the system is stable (Im~2<0)

S provided the contour r’ in the complex D plane does not enclose the

point _2(b ,+b~)q
2a. Therefore, it follows from Figs. 7(b) and 8(b)

that a necessary condition for instability is

s<l . (C.4)

S Moreover , f rom Fig . 7 (b) , we also note that

0<(b +b~ )q 2 ct<l (C.5)

is a necessary condition for instability. Since q2cs>0, we conclude

that (b _+b+)>O is required for instability, which is consistent

with the results obtained from a numerical analysis of the dispersion

relation (see Fig. 4). Combining the two inequalities in Eqs. (C.4)

and (C.5) , and making use of Eq. (C.2), it is straightforward to show

for typical beam parameters that

I q I .h I k_ 8~w/ c I << l /R 0 (C.6)

is required for instability, which corresponds to a very narrow

bandwidth in k—space. The inequality in Eq. (C.6) can also be

demonstrated for the case (b_+b+)~O, 
by Taylor—expanding (b +b+)

5*—-- 5—;- - - -~~~~~~~~~~~~
- -~~~~ - - — — 5~~~~~~
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about w
~

kVb+wc/yb , keeping first—order terms in fl, and making use of

(d(b_+b+)/d
~ Ikv .~~~,y

>O.

1 5*

~
S -4
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Electron density [Eq. (17)] and temperature profiles [Eq. (21)].

Fig. 3 The straight lines w k V
b
+
~ 

1
~b 

and w kc/8b intersect at (w0,k0)= H
5 2 2  2 2 2 1/2

~~c~b’ 8b~cYb
/
~~ 

The curve ~=(c k +u~~c /R) passes

through (~0,k0) provided ctO n c ~~c

Fig. 4 (a) Plot of sum of magnetic wave admittances (b,.+b
+
) (Appendix B)

versus R / R 0, for B0 0.2 , Bb~
O.l43 and a/R 0 ”O.l. (b) Plot of

normalized growth rate versus R
~

/R0 [Eq. (68)], for v 0.OOl

and parameters otherwise identical to Fig. 4(a). 5

Fig. 5 (a) Plot of sum of magnetic wave admittances (b +b+) (Appendix B)

versus R
~
/Ro, for 80 0 4 

~b
°”286 and a/R0”O.2. (b) Plot of

the normalized Doppler shifted real frequency Re
~
2/wc~

Re(w_kV
b
_
~c

/yb)/wc

and growth rate w1/w versus R
~
/R0 [Eq. (68)], for v—O .OO1 and

parameters otherwise identical to Fig. 5(a).

Fig. 6 Plot of normalized growth rate W j/W versus R
~
/R0 [Eq. (68)],

for v 0.Ol and v 0.l , and parameters otherwise identical to

Fig. 5(a) .

5* 
Fig. 7 Map of upper—half z plane (contour I’) onto the D plane (contour I”)

for s<1.

FIg. 8 Map of upper—half z plane (contour 1’) onto the D plane (contour ~‘)

for s>l.
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